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Abstract

We report on the first part of a study of electron-hydrogen scattering, using a method [Bhatia,

Schneider, and Temkin, Phys. Rev. Lett. 70, 1936 (1993)], whicl_ allows for the ab initio calculation

of total and elastic cross sections at higher energies. In its general form the method uses complex

"radial" correlation functions, in a (Kohn) T-matrix formalism. The titled method, abbreviated

CCKT, is reviewed, in the context of electron-hydrogen scattering, including the derivation of the

equation for the (complex) scattering function, and the extraction of the scattering information
from the latter. The calculation reported here is restricted to S-waves in the elastic region, where

the correlation functions can be taken, without loss of generality, to be real. Phase shifts are

calculated using Hylleraas-type correlation functions with up to 95 terms. Results are rigorous

lower bounds; they are in general agreement with those of Schwartz [Phys. Rev. 124, 1468 (1961)],

but they are more accurate and outside his error bounds at a couple of energies.



I. INTRODUCTION"

In a previo,l:_paper [I]. wedevelopeda method for calculatingelastic and total crosssections
for elecr,ron-;tr,om sca,tteria.g. Called"complexcorrelation Kohn T", and abbreviated (CCI<T) the
method is in_,ended for non-elastic scattering in 10w and medium energy range, by which we mean the

energy domain where allthe inelasticchannels are open plusthe continuum of ionizationchannels

(up to a total available energy E, which is, say, less than five times the continuum threshold).

Clearly no method can specify all such open channels individually, and usual approximations such

as the Born and eikonal methods [2] are only reliable at high energies. Because our method is

intended for the low continuum, it is a partial wave method where the partial wave expansion can

still be expected to converge reasonably effectively.

The original formulation [1] was applied to an approximation of electron-hydrogen (e-H) scattering

called the spherically symmetric model [3]. The S-wave part of that model reduces to the Temkin-

Poet model [4,5], and it was only for the latter that the actual calculation was carried out. (The T-P

model was later generalized in a different and more incisive way in what was called the "generalized

exchange approximation" [6] ).

In this paper we deal with the real (i.e. physical ) e-H problem: The method is reviewed in

Sec II. Specifically a more detailed derivation 'of the (complex) optical potential and scattering

equations is given. As opposed to ReL [1], the emphasis here is on the numerical solution of

the scattering equation by decomposing it into its coupled real and imaginary parts and from the

solution extracting the (non-unitary) T-matrix.

An actual calculation in its full generality, however, is still a very extensive undertaking. We shall

therefore confine ourselves in this initial study, to elastic S-wave scattering. Here our aim is to

check and increase the accuracy of the classic calculation of Schwartz [7]. Results are presented

in Sec. III. Suffice it here to say that our results are rigorous lower bounds on the phase shifts.

Thus where they exceed Schwartz' results, which they do at two energies, they are necessarily more

accurate. In general our results are within the stated uncertainty of his remarkable calculation

(considering when it was done). Here, given the convergence of our results, we would only claim

greater accuracy.

II. THE COMPLEX CORRELATION KOHN T (CCKT) METHOD

A. General

Confined to the e-H partial wave (denoted by L) problem, the total spatial function is written:

rl
(1)

The superscript (_) above refers to singlet (upper sign) or triplet (lower sign) scattering respec-

tively. [That superscript will be dropped hereinafter, except where it is necessary.] Beyond the

terms containing uL explicitly (those are the terms giving rise to the exchange approximation), the

function _L is the correlation function, which is our concern here. For arbitrary L this function is

most efficiently written in terms of symmetric Euler angles [8] :

÷ ¢, l :2)

The P "'_ functions (t-+i,-1) are exchange adapted combinations of Wigner functions. (The

functions, in general have been called rotalional harmonics [9].) The f :s above are generalized



"radial" functions, which depend on the 3 residual coordinates that, are required (beyond the Euler

angles) to define the two vectors rt and r_ (Further technical details of the symmetry and other
properties of the symmetric Euler angle description are given in [8]). What distinguishes this CCKT

approach is the fact that the "radial" functions are taken to be complex. That is differeut from
ordinary variational methods, wherein the radial functions are taken to be real. [n the latter ca_e,
when one forms the variational functional to be varied [cf. Eq.(5) be[owl, one uses the function

¢_,) on the left. That is so because the ./functions would be real, so that only the D functions in
(2) would be complex conjugated. When the radial functions are complex, however, then - in order
to have a variational principle for the T matrix - only the D but not the radial functions are to be

complex conjugated in the left-hand function. That is indicated by using the tilde rather than star

for that function, which is used in the functional It of the variational principle (below). Explicitly

#L = _L - Og + _g (3)

where

(4)

• The Kohn variational principle [10] for TL reads :

6 [IL - (--1)LTL] = 0 (5)

where IL is the (Kohn) functional

(6)

Carrying out the variation leads to scattering equation for U(L+)(r) (Rydberg units throughout):

d2 L(L + 1) _,'(+) - k 2] u (+) = 0 (7)dr 2 r2 + Va 4- Ve= + op ]

Vd and Ve= are the well known direct and exchange potentials of the "exchange approximation" [11]

Those potentials (the latter being non-local) are real, however the (remaining) optical potential

acting on uL(r) is complex :

YopUL = r<Y_.oPHQ E_QHQQHPqdL> , (8)

Thus, uL(r) is nontrivially complex, which leads to a nonunitary TL matrix, which is derivable

from the asymptotic form of UL

_-+_limuL(r) = iLsin(krk- rcL/2) + T£,e ;'v'" (9)

In defining the optical potential we have used the Feshbach approach [12], involving projection

operators P and Q, which for the hydrogenic (i.e. one-electron) target can be written expicitly [13]



P= Pt + P2- PtP_ (tO)

where the spatial projectors are :

Q = t - P (it)

P,,= e-_'Yoo(÷i) >< e-"'l, bo(_J (12)

Note, PI and P2 commute and are each idempotent, hence the complete P and Q operators are

idempotent (p2=p; Q2=Q) and orthogonal (PQ=0).

To complete this review of the CCKT method, the optical potental is expanded in terms of the

eigenspectrum of the QHQ problem:

6 I < _LQHQ_L > ]
_--2-d-_L-; ] = o (13)[

This leads to complex radial eigenfunctions (I)(L3) and complex eigenvalues E_. Insertng a complete

set of these functions (understood to be approximated by a discrete set arising from (13) using an

ansatz with a finite number of variational parameters) allows the optical potential to be expanded

y- tf _._ t r _ 2 _(i)(s) ,n,_,(8) 2 z_,T,
Nw < LOt 1)_'10 I, 2)_'_ L >< _'_"_L _12 l-'ltL >

I,'_UL (rl)=r,_ E-g,
$

(14)

To repeat the main point of the CCKT method: because the radial functions _'_/_ (_1,_2,_,_) in (2)
are complex, the resulting Tr.. matrix (which in this method is actually a number) will be complex
and nonunitary. This means that the elastic cross section, calculated from

0% = 4w(2L + 1)ITLI2

will be different from the total cross section

(15)

.¢.

4n-

crz, = _(2L + l)Im(Tg) (16)

The effect of a nonunitary TL, is of course well known from the literature (cf.: for example Ref.[14]).

What is new about the CCKT is that it provides an ab initio method for calculating 7"5, rather than

parametrizing it, as was done for example in the "clouded crystal ball" model of neutron-nucleus

scattering and reactions [15].

B. Some Details of the CCKT Method

The l<ohn variational principle is generally applied in such a way, as in Ref.[1], that the function

uL(r} of Eq.(7) is parametrized by an expansion in terms of known functions, and the functional

i, Eq.(6) is analytically evaluated; it is a bilinear expression in terms of the (linear) expansion

coefficients. The (Kohn) principle then reduces to differentiation with respect to these parameters,



which i;_turn ]ends to ,'_set ofJJnearequations,the ],-Litbeing an inhomogeneous equation From the

differentiationwith respectto TL. The solutionof the setof equations then provides valuesforall

the (linear)constants plus the valueof To. The Fattercan be improved by subtractingthe value

of the functiona.[itself, which in generalwillnot be zero when the calculationisperformed in this

way. In thatcase an improved Tc can be obtained by subtraction:

TLimproved
= TL- iL (17)

When, however, the calculation is carried out (as it is here) by solving directly for uL(r), then this

is equivalent to making [c=O. Thus the TL that emerges is automatically the improved (i.e. the

second order) result. What we shall now do is to outline briefly how the calculation is performed

when the potentials and hence the solutions are complex. Specifically, the radial equation can be
written:

(181

where

£(L I d= C(L+ i)
= --_-_r2 + r2 + Vd 4-Ve= - (19)

The Vd is the (local) Hartree potential [ Vd(r) = -2 exp(-2r) (1 + i/r)] and V_= is the well-known

(non-local) static exchange potential [11]. The remaining (non-local) potential is what is gererally

called the optical potential, Eq.(5).

We now give a few details of how one solves the radial equation (18) in the general case. Dropping

sub (super) scripts, we write the solution of (4)

u(r)= uR(r) + iul(r) (20)

where ua(r) and u/(r) are real functions which, substituted in (18), lead to a coupled set of (real)

differential equations.

(c+ = . (21)

op ,_. (22)

y(a) and _;(D above are the real and imaginary parts of the optical potential, respectively. (Bothop --op

are real,non-localpotentials).The coupled Eqs.(_l,22) have two setsofsolutions(i.e.both regular

at the origin), labeled u(_)(r), u_0(r) [i = 1,2]. From these two solutions one determines two real

constants C1 and C2 such that the real and imaginary parts of the asymptotic form (9) is satisfied,

that the equation for L=0 reduces to

lira [Ctu(_ ) +C2u_ )] sinkrr-_ - k + Tacoskr - "Tlsinkr (23)



The two linearly independent solutions will necessarily have the asymptotic Form

(25)

in which one of the normalization constants, say A(_ ), is arbitrary. This is tantamount to letting

Afi)--A_0/.4(_ ), which allows (23, 24) to be rewritten

1

C, sinrl(_) + C_sin,(_ )= TR (28)

(29)

The r/'s and A's are extracted from the solutions of (21, 22); thus (27-30) is a set four equations

for four real constants : Cl , (72 and in particular the real and imaginary parts of T: TR and 2"/ •

From the latter one calculates the elastic and total cross sections, Eqs. (15), (16).

III. CALCULATION

As stated in the INTRODUCTION we calculate here only S-wave (i.e. L=0) elastic scattering,

specifically phase shifts. This means, since T)/.= constant, that the correlation function _L is only

a function of the "radial" coordinates. Here (I)L is taken of Hylleraas form

Y_

i)(:l:) ,_ n
C=0 -- e-'_'-_ _ Ct,,_-r_r2 r12 4- (1 _ 2) (31)

Irnn

where the sum includes all triples such that I-F m-Fn=w and w= 0, 1, 2, ...... ,8. The total number

of terms N,, depends on spin and whether _'-5 or not. The values of N_, as a function of l, m, n is

given in the following simple array:

w---_ 0 1 2 3 4 5 6 7 8

'S: N_(7--5) 1 3 7 13 22 34 50 70 95

3S: N_,(7_5) 1 4 10 20 35 56 84 120 165

To summarize the calculation: the QHQ problem is solved (for a given _1 and 6 and N_,). The

result is a set of eigenvalues C, (s=l,2, . ..... N_) and associated eigenfunctioas ¢(_). From them

(the terms in) the optical potential, Eq.(]4) is constructed, and .the integro-differential Eq.(7) is

solved noniteratively. Because all quantities are real, the solution is unique (up to an arbitrary

normalization) with asymptotic form



Fromu(_l(r) and its derivative the ph_e shift q is readily extracted.

Examples demonstrating the convergence of q for k=0.8 as a function of N,_ are given in Table I. By

virtue of the fact that r]'s are rigorous lower bounds on the phase shift [za], the convergence then

becomes a powerful indication of the accuracy of the result. Phase shifts as a function of k are given

in Tables [I and III. To repeat: they are rigorous lower bounds in all cases. They are compared

to the results of Schwartz [7]. Our 1S phase shifts are seen to exceed Schwartz' (including his

estimated error) at k=0.3, 0.4. Otherwise our results for both tS and aS are within his estimated

uncertainty, which we find to be quite impressive considering that his calculation was carried out

over 40 years ago! Nevertheless we believe that our present calculation is more accurate. The

difficulty in making a secure extrapolation is due to the difficulty of estimating quantitatively the

effects of polarization and other long-range potentials at non-zero k. (In principle, one can optimally,

rigorously include polarization by use of a polarization pseudostate [16]; however in practice those

corrections are small, yet require a much more extensive calculation than is worthwhile here for

our present purpose.) The convergence of the results suggests that they are accurate to one or

two units in the fourth place after the decimal point. (We have given five digits because to that

accuracy they are rigorous lower bounds.)

Scattering lengths are not included in our calculation, because at k=O the Kohn variational prin-

ciple, which applies to Schwartz' calculation, is well known to provide rigorous (in this case upper)

bounds [17]. It is worth recalling that one of us [18] had earlier deduced that long range polarization

would have decisive quantitative effect on the scattering length and had derived a formula

a-'a(R)-o_(R R2 +O( )) (33)

in which a(R) represents the value of scattering length including only the region of configura-

tion space r _< R, and the remaining terms in (33)give the effect of the long range polarization

(o_=polarizability of the hydrogen atom= 4.5). Using that formula led to the first correct estimate

of the true scattering length [18]. Thus when Schwartz applied his calculation at k-'O, he found it

necessary to include the equivalent of long range polarization terms, as predicted [18], in addition

to the Hylleraas terms in order to get adequate convergence. His results are: a(1S)= 5.965 4- 0.003,

a(aS)= 1.7686 4- 0.0002. For these reasons we believe his scattering Iengths are sufficiently secure

and accurate as to not require further calculation.

Numerical results were obtained with Crab' Y-MP computer of the NASA Center for Computation
Science.
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"FABLE I. Convet'gence_of S-wavepha.seshift as_ Functionof N(-') for k=0.8

_S 3S

E..42 0.65127

3(1) 1.23 0.79028

T(2) 0.68 0.87536
13(3) 0.68 0.87684

22(4) 0.69 0.88362

34(5) 0.61 0.88584

50(6) 0.54 0.88616

70(7) 0.66 0.88687

95(8) 0.72 0.88718

N(_) _ = 6 _{+) N(_) 7 6 r1{-)
E.2: b 1.61729

10(2) 0.65 0.55 1.63845

20(3) 0.84 0.70 1.64205

35(4) 0.85 0.50 1.64294

56(5) 0.85 0.50 1.64344

84(6) 0.85 0.50 1.64379

° The phase shifts (in radians) have been optimized with respect to 1' and 6 for each N(w).

b E. A. are the well-known exchange approximation phase shifts [11]; it corresponds to no

correlation terms [N(w)=0 --+ 12op=0 in Eq.(7)].

9



TABLE II. Phaseshifts of tS for variousk for N-'95

k 7 = _ T/ TlSchw_rt_

0.1 0.53 2.5,5358 2.553(1)
0.2 0.60 2.06678 2.0673(9)

0.3 0.72 1.69816 1.6964(5)
0.4 0.70 1.41540 1.4146(4)

0.5 0.70 1.20094 1.202(1)

0.6 0.70 1.04083 1.041(1)

0.7 0.71 0.93111 0.930(1)

0.8 0.72 0.88718 0.886(1)

lO



TABLE [II. Phaseshifts of 3S for various k for N=84

k 7 6 rI 17Schwartz

0.1 0.85 0.12 2.93853 2.9388(4)

0.2 0.84 0.39 2.71741 2.7171(5)

0.3 0.90 0.37 2.49975 2.4996(8)

0.4 0.91 0.38 2.29408 2.2938(4)

0.5 0.88 0.44 2.10454 2.1046(4)

0.6 0.77 0.52 1.93272 1.9329(8)

0.7 0.70 0.55 1.77950 1.7797(6)

0.8 0.86 0.50 1.64379 1.643(3)
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